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Abstract—This paper provides an overview of the many new 
features and algorithm updates in the release of the NASA 
Analogy Software Cost Tool (ASCoT).  ASCoT is a web-based 
tool that provides a suite of estimation tools to support early 
lifecycle NASA Flight Software analysis.  ASCoT employs 
advanced statistical methods such as Cluster Analysis to 
provide an analogy based estimate of software delivered lines 
of code and development effort, a regression based Cost 
Estimating Relationships (CER) model that estimates cost 
(dollars), and a COCOMO II based estimate.  The ASCoT 
algorithms are designed to primarily work with system level 
inputs such as mission type (earth orbiter vs. planetary vs. 
rover), the number of instruments, and total mission cost.  This 
allows the user to supply a minimal number of mission-level 
parameters which are better understood early in the life-cycle, 
rather than a large number of complex inputs. 
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1. INTRODUCTION 
The prototype version of ASCoT, the NASA Analogy 
Software Cost Tool, was first introduced at the 2016 IEEE 
Aerospace conference [1]. ASCoT is designed to address the 
specific problems associated with the issues of sparse, 
small, and noisy data sets.  The NASA Analogy Software 
Cost Model is built on research into the effectiveness of data 
mining algorithms over the past ten years by Menzies et al 
[2,3,4,5].   The model uses a combination of spectral 
clustering and k-nearest neighbor on system characteristics, 
which are symbolic and not numerical data.   This enables 
the ability to estimate software development effort early in 
the project lifecycle with easily attainable inputs like the 
type of mission and the number of instruments.  ASCoT is 

developed as a compliment or extension to the existing 
widely used parametric methods.  The other contribution of 
this paper is the emphasis on the use of the magnitude of 
relative error (MRE) and it’s associated measures of Median 
MRE (MMRE) and Pred(30)1  as a metric for evaluating 
cost model performance across very different types of 
models.  

The following is a summary of the key findings from our 
previous work [1]: 

• There are a variety of models whose performances 
is hard to distinguish (given currently available data), but 
some models are clearly better than others. 

• If one has sufficient detailed data to run COCOMO 
or a comparable parametric model, then the best model is 
the parametric model. On this point also see [6]. 

• When insufficient information exists then a model 
using system parameters only can be used to estimate 
software costs with only a small reduction in accuracy.  
The main weakness is the possibility of occasional large 
estimation errors which the parametric model does not 
exhibit. 

• While a nearest neighbor model performs as well 
as spectral clustering based on MMRE, spectral clustering 
handles outliers better and provides a structured model 
with more capability.  

• A major strength of the nearest neighbor and 
spectral clustering methods is the ability to work with a 
combination of symbolic and numerical data. 

ASCoT was initially developed with a Microsoft Excel™ 
based front end and a Python coded back end, which read 
from an Excel input file.  The new release of ASCoT is a 
totally web-based application with an associated database 
that is only available to the NASA community by NASA 
Headquarters (HQ) approved users at 
https://www.ONCEData.com.  This demonstrates NASA’s 
capability of moving advanced statistical models to the 
online environment, which we hope to build on in the 

 
1 Pred(30) was a popular measure of model performance in the eighties and 
nineties, but seems to have fallen out of favor. 
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future. The implementation of a web-based model has 
allowed ASCoT to expand its capabilities more quickly.  
For example, the use of data visualization has been greatly 
increased and ASCoT can now run on both PCs and Macs.    

There are also number of other changes that have been made 
to ASCoT over the past year.  There is the addition of new 
historical data, which has enabled us to refine the clusters 
and improve the CER.  The parametric model, COCOMO II 
has also been added.  COCOMO II uses the outputs from 
the ASCoT spectral clustering algorithms to derive the more 
detailed inputs required by COCOMO.  The biggest change 
is – saying, “Good Bye!” to Microsoft Excel ™. 
 
2. DATA SUMMARY 
A. Sources  
The NASA Cost Analysis Data Requirement (CADRe) is a 
formal project document that describes the life-cycle cost, 
schedule, technical, and risk information of a project.  The 
CADRe has three separate Parts: A, B, and C. Part A is a 
narrative description of the project throughout its lifecycle 
at each milestone and includes essential subsystem 
descriptions, bock diagrams, and heritage assumptions. Part 
B contains the technical design parameters such as power, 
mass, and software metrics for each subsystem in a 
standardized template. Part C captures all the cost data 
broken out by Work Breakdown Structure (WBS) 
throughout the lifecycle by project phase.2 
• ASCoT Data was updated last in October, 2016 
• Available missing data items were obtained from other 
sources including contacting project software managers 
• Verifiable CADRe data was revised with 
information/data from other sources  
• System descriptor data was supplemented with data 
from NASA project websites, project reports, and 
Wikipedia articles. 
• Software metrics for older missions that predated the 
CADRe were supplemented with data records from a data 
collection conducted for the International Space Station that 
was completed in 1990.  A subset of these records can be 
found at the PROMISE (Predictor Models in Software 
Engineering) website under the COCOMO directory.   
• Contributed Center level data 
The data analysis used for Table 1 through Table 14 varies 
in “Number (#s) of Records” due to some incomplete data 
which was not used. The analysis only accounts for 
complete data, for that particular analysis, as indicated for 
each table result. 
 
B. Data Description 
Table 1 contains a list of the data used in the study including 
the total number of mission records that have data by each 
variable.  For a detailed description of the types of data 
parameters collected see Appendices A (COCOMO Model 
Inputs) and B (System Parameters).  There is a total of 61 
missions where data was collected, but a few were not used 

 
2 https://www.nasa.gov/sites/default/files/files/CEH_AppA.pdf 

due to partially incomplete data. The number of projects for 
which there was at least partial data increased by 10 to 49 
projects.  Of those only 34 could be used to update the 
cluster model and 37 for the regression model.  There is also 
an increase in the correctness of the data from the prototype 
release. 
 

 
 

 

 
Table 2 contains a list of all missions for which data was 
obtained with an indication of which missions were used to 
build the analogy and regression models.  While the two 
models share many of the same projects the data used is 
different as ASCoT is an effort estimation model and the 
regression is a cost estimation model with software cost as a 
function of spacecraft cost.  
 

 
Data Item 

Number of 
Missions 

(Current - 
2017) 

Number of 
Missions 

(2016)  

Total development effort in work months 36 28 

Flight Software Development Cost  37 30 

Flight System Development Cost 37 30 

       Logical Lines of code (LOC)  

Delivered LOC 49 36 

Inherited LOC (Reused plus Modified reused 
lines) 43 36 

COCOMO model inputs (See Appendix A for 
the parameter definitions) - Translated from 
CADRe which has SEER model inputs 
because the SEER data items are very sparse in 
CADRe 

19 19 

System parameters * (See Appendix B parameter 
definitions) 

 

Mission Type (deep-space, earth-moon, rover-
lander, observatory) 49 39 

Multiple element (probe, etc.) 49 39 

Number of Instruments 49 39 

Number of Deployables 49 39 
Flight Computer Redundancy (Dual Warm, 
Dual Cold, Single String) 49 39 

Software Reuse (Low, Medium, High) 41 36 
Software Size (Small, Medium, Large, Very 
Large) 41 36 

Table 1 Data summary with number of records – 34 missions 
have complete verified data and were used in ASCoT 

Clusters 
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Table 2 Mission by type and model inclusion 

 

Tables 3 through 8 below summarize the data by median, 
average, and spread metrics for each parameter.  There was 
little change in the summary metrics as a result of the 
addition of the new and corrected data.  Overall Deep Space 
missions have more lines of code, higher development 
effort, cost more, have more instruments, and are more 
likely to be dual string than Earth Orbiters.  Not 

surprisingly, In Situ missions have significantly more 
deployables and instruments then all other mission types.  
Slightly surprising is that Earth Orbiters and deep space 
missions have similar inheritance rates even though many 
Earth orbiters can draw more easily on the various 
contractor product lines. 

 

Table 3 Effort by mission type 

 

 

Table 4 Delivered LOC by mission type, actual count 

 

 
 
Tables 5 and 6 show software size and inheritance by 
categories.  While actual code counts or estimated percent 
existed for software size and inheritance, these values were 
converted to categories for two reasons. Most notably, the 
model under development is designed to be used in early 
lifecycle phases and estimators would only have an 
approximate idea as to the number of delivered and 
inherited LOC.   The other reason is that there are many 
inconsistencies in how lines of code are recorded, which 
impacts the NASA CADRe, and the counting rules used are 
often not documented, so the use of categories is a more 
accurate reflection of the actual accuracy of the data. 

 

Table 5 Software size by size category and mission type 

 

 
Mission 

Type 

EFFORT (months) 
# 

Records 
Median S.D. Avg. Range 

Earth/Lunar 
Orbiter 

22 584 354 651 100 – 1,190 

Observatory 5 492 631 742 233 – 1,830 

Deep Space 17 637 375 686 48 – 1,436 

In Situ 5 1,080 555 1,232 634 – 1,888 

 Mission 
Type 

Logical Delivered LOC 
#Rec. Median S.D. Avg. Range 

Earth/Lunar 
Orbiter 22 96,000 41,432 101,821 12,000 – 170,000 

Observatory 5 107,000 95,548 23,000 23,000 – 280,000 

Deep Space 17 122,000 75,431 24,000 24,000 – 289,900 

In Situ 5 205,000 145,334 94,3000 94,300 – 475,000 

Mission 
Type 

Software Size  

#Rec. 
Very 

Low to 
None 

 
Low 

 
Med High Very High 

Earth/Lunar 
Orbiter 22 3 13 6 0 Medium 
Observatory 6 1 5 0 0 Medium 
Deep Space 16 2 4 7 3 Large 
In Situ 5 0 1 2 2 Large 
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Table 6 Inheritance by Mission Type 

 

 

Table 7 and 8 show deployables, instruments, and flight 
computer redundancy by mission types. For deployables and 
number of instruments, it is shown that these numbers are 
high for Deep Space and In Situ compared to Earth/Lunar 
Orbiter and Observatory. The flight computer redundancy’s 
Dual-String Cold and Dual String Warm is also shown to be 
higher compared to Earth/Lunar Orbiter and Observatory 
missions.  

 

Table 7 Deployables and instruments by mission type 

 

 
 

Table 8 Flight computer redundancy by mission type 

 

 
 
Tables 9 through 12 shows Delivered Productivity by 
Logical Lines of Code by mission type and inheritance 
level; low (<20%), medium (<50%), high to very high 
(>=50%).  Inherited code includes both reused and modified 
reused code reuse.  As expected, all mission categories 
clearly show that increases in inheritance result in higher 
productivity rates.  

 

Table 9 Productivity (Delivered Logical LOC) by mission 
type 

 
 
 

Table 10 Very low to none and low inheritance delivered 
productivity 

 
 
 

Table 11 Medium inheritance delivered productivity 

 
 
 

Table 12 High and very inheritance delivered productivity 

 
Tables 13 and 14 provide a summary of the flight software 
and flight system cost data in FY16 dollars ($K).  As with 
the effort data, the cost of deep space missions are more 

 
Mission 

Type 

Inheritance 

#Rec. Very Low 
to None 

 
Low 

 
Med 

High Very 
High 

Med. 

Earth/Lunar 
Orbiter 18 4 0 4 4 6 High 

Observatory 5 0 1 2 1 1 Low 

Deep Space 15 2 3 2 3 5 High 

In Situ 5 2 1 0 1 1 
Very 
Low/
None 

 
Mission 

Type 

 
 

#Rec. 

Deployables Instruments 
Median RANGE Median RANGE 

Earth/Lunar  
Orbiter 

22 2 0 - 7 3 1 - 7 

Observatory 6 2 1 - 6 4 1 - 6 

Deep Space 16 2 0 - 8 5 2 - 12 

In Situ 5 6 2 - 10 7 3 - 10 

 

Mission 
Type 

 
 

Flight Computer Redundancy 
 

#Rec. Single 
String 

Dual-
String 
Cold 

Dual- 
String 
Warm Median 

Earth/Lunar  
Orbiter 22 14 8 0 

Single 
String 

Observatory 6 1 5 0 
Dual String 

Cold 

Deep Space 16 1 13 2 
Dual String 

Cold 

In Situ 5 1 0 4 
Dual String 

Warm 

 
Mission 

Type 

Productivity (Logical Del/month) 
# 

Records Median S.D. Avg. Range 

Earth/Lunar 
Orbiter 22 191 214 260 65 – 823 
Observatory 5 244 192 238 46 – 460 
Deep Space 17 208 168 262 37 – 615 
In Situ 5 249 81 212 87 - 292 

Mission 
Type

# of 
Records

Avg. Prod Median Prod Range

Earth/Lunar 
Orbiter

4 106 106 62 - 150

Observatory 1 - -  - 

Deep Space 5 134 130 24 - 214

In Situ 3 292 308 94 - 475

TABLE 11.     LOW INHERITANCE 
DELIVERED PRODUCTIVITY

Very Low to None and Low Inheritance     (0% - 
<20%) DELIVERED Productivity

 
Mission Type 

Medium Inheritance (>=20% - <50%)     
Delivered Productivity 

#Records Median Avg. Range 

Earth/Lunar 
Orbiter 4 96 12 - 170 94 
Observatory 2 66 23 - 109 66 

Deep Space 2 141 
100 - 
182 141 

In Situ* - -  -  - 

Mission 
Type

# of 
Records

Avg. Prod Median Prod Range

Earth/Lunar 
Orbiter

10 99 95 41 - 156

Observatory 2 194 194 107 - 280

Deep Space 8 169 146 86 - 290

Insitu 2 195 195 185 - 205

TABLE 13.     HIGH AND VERY HIGH 
INHERITANCE DELIVERED 

PRODUCTIVITY
High and Very High Inheritance (>=50%) 

Delivered Productivity
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expensive then earth orbiters.  The data indicates that the 
difference in cost is greater than the difference in effort 
between mission types.  This is most likely because the 
reported cost includes procurements and costs of additional 
WBS elements that were not included in the effort data.  
One example is simulators for the flight system which some 
contractors include with flight software costs as they are 
used for testing the flight software.   Another pattern not 
shown here, but is in the data, is that the median value of the 
ratio of flight software costs to flight system cost are 10% 
for all mission types except In Situ which is 5%. 
 
 

Table 13 Software development cost (FY16$ K) 

 
 
 

Table 14 Total spacecraft (FY16$ K) 

 
 
 
3. METHODOLOGY 
One of the significant contributions of the research 
conducted in developing ASCoT is the recognition of the 
importance of the use of the magnitude of relative error 
(MRE) and its associated measures such as the mean or 
median MRE as a metric for evaluating cost model 
performance across very different types of models.  MRE 
measures are popular in the data mining literature because 
they require no assumptions about the underlying 
distributions enabling one to compare model performance 
across very different types of models.  Pred(30), another 
MRE statistic, was very popular in the cost field in the 
eighties and nineties but seems to have fallen out of favor 
[7].  Our research indicates one should use the entire MRE 
curve, the Median MRE (MMRE), the interquartile range, 
and then when appropriate compute the Pred measure based 
on the risk perception of different types of error.  For 
example, an evaluation metric for models of Pred(30)>80%  
is a metric that says, “be accurate most of the time”, and it is 
acceptable if the model is way off, “once in a awhile.”   A 
Median MRE (MMRE) metric indicates that one is 

concerned with model performance across the entire range 
of the data. For a detailed description of the models 
evaluated and the evaluation method see [1, 4].  Hihn et al 
(1) also contains a detailed description of the spectral 
clustering algorithm used in ASCoT.   
The regression based cost model included in ASCOT was 
derived using standard linear regression based on the F-test 
results of the F-test, t-test and R2. The cost regression is 
derived from a related but different set of data than the 
analogy model using the cost data in CADRe Part C and not 
the development effort as reported in CADRe Part B.   
 
The only difference in the methodology from that reported 
is [1] how the test cases were generated.  In [1]  we used 
leave out validation while in this this paper we generated a 
set of 12 test cases derived from a standard decomposition 
of the data set based on mission type, software size, 
software inheritance and then took the average or median of 
records in each subset as appropriate.  
 
4. RESULTS 

A. Analogy Cluster Model Results 

 
The cluster based analogy model of ASCoT Beta is a 
significant improvement over the previous versions of the 
model.  The median MRE decreased by a third from the 
prototype model as can be seen in Table 15 and in Figure 1.  
The improvement is a result of the increased sample size 
and data corrections as more and better data has become 
available from the NASA CADRe’s.  There is especially a 
large improvement in the reduction in large errors with the 
worst case decreasing from 506% to 175% and now 11 of 
12 or 92% of the test cases have a relative error of less than 
55% .  However neither of the models yet meets the “old 
gold standard” of Pred(30) ≥ 80% .  It is expected that the 
results will continue to improve as more data becomes 
available.   
 

 

Mission 
Type 

Software Development Cost (FY16$ in K) 
# 

Rec. 
Median S.D. Avg. Range 

Earth/Lunar 
Orbiter 

17 
 $6,653   $8,542   $10,141  

$1,134 – $24,205 

Observatory 3 
 $8,506   $7,093   $11,559  

$6,504 - $19,667 

Deep Space 13 
 $14,445   $9,836   $15,311  

$1,102 - $39,951 

In Situ 4 
 $22,650   $24,697   $28,881  

$7,286 - $62,940 

 

Mission 
Type 

Total Spacecraft Cost (FY16$ in K) 
# 

Rec. 
Median S.D. Avg. Range 

Earth/Lunar 
Orbiter 

17 
 $61,498   $63,247   $85,998  

$14,798 – $200,398 

Observatory 3 
 $62,822  

 
$100,212  

 
$114,039  

$49,786 – $229,508 

Deep Space 13  
$169,302   $94,343  

 
$197,008  

$84,971 – 401,063 

In Situ 4  
$381,995  

 
$538,288  

 
$570,111  

$181,375 – 
1,335,078 
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Table 15 MRE by rank order and model version 

 
 
 

 
Figure 1 MRE by rank order and Model Version 

 
The updated analogy model has 9 clusters compared to 8 
and many of the clusters now have more than 3 projects in 
each cluster making them more robust.  The current cluster 
set is summarized in Table 16 which shows the cluster 
membership and the median development effort.   
 
An overview of how the clusters compare by effort and 
mission size is displayed Figure 2.   The cluster number 
which matches the clusters listed above is on the horizontal 
axis.  The vertical axis is the software development effort.  
The size of the bubble/circle corresponds to the total 
mission cost. 
Here it can be seen that the software effort range overlaps 
between clusters as what makes them similar is not driven 
by development effort but by the system characteristics.  
The main drivers in the cluster formation are Flight 
Computer Redundancy (Single String vs Dual String 
(Cold,Warm)), and software size.  The median of the range 
of the effort is approximately 2 to 1 for every cluster except 
for Cluster 2 which is 10 to 1.   The outliers in Cluster 2 are 
GPM Core as one of the most expensive earth orbiters and 

GEMS the least expensive of the earth orbiters.  GEMS is 
likely due to reporting of the development effort, given the 
project delays.   Again, as more data becomes available and 
we evolve the algorithm we expect these types of issues will 
go away. 
 

 
Figure 2 Clusters by effort and mission size 

 

Table 16 Cluster membership and median effort 

 
 

B. Regression Results 

 
The regression models were developed with cost data from 
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1 464
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the CADRe Part C with minimal normalization, partly as a 
test to see to what extent the raw CADRe data could be 
successfully used to develop a basic cost model.  The 
additional benefit is that minimal normalization makes 
verifying the project data used in the model very fast and 
easy. The basic regression models performed so well that it 
was decided to include them as part of the ASCoT tool.  
Again, as with the analogy model the guiding principle was 
to keep it simple with inputs that can be “approximated” in 
the early stages of concept development, through Step 1 
proposals, and in early phases of the lifecycle.   The MRE 
analysis results are shown below in Table 17 and Figure 3.  
The results are roughly comparable to the cluster model.  
The regression models largest errors are smaller than for the 
analogy model but Pred(55) = 66% compared with 90% of 
the test cases for the  analogy model. 
 

Table 17 MRE by Rank Order and Regression Type 

 
 
 

 
Figure 3 MRE by rank order for all models 

 
The results for all four regression models are shown below 
(Figures 4-7).  As a quick rule of thumb the results indicate 
that flight software costs around $4 million at a minimum 
and then runs 4% of spacecraft cost.  This result is heavily 
driven by the planetary missions as when analyzing only 
Earth/ Lunar orbiter missions the intercept is not 
significantly different from 0 and software runs 7% of 
spacecraft cost. 
 

 
Figure 4 ALL MISSION TYPES WITHOUT INSTRUMENTS 

SW Dev Cost = 4792 + 0.04635*(Total SC Cost, (FY16$K)) 
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Figure 5 ALL MISSION TYPES WITH INSTRUMENTS 

SW Dev Cost = 3433 + 0.04351*(Total SC Cost, (FY16$K))+ 440.6*(Num of Instr) 
 

 
Figure 6 EARTH/ LUNAR ORBITER MISSION WITHOUT INSTRUMENTS 

SW Dev COST = 1264 + 0.07162*(Total_SC_Cost, (FY16$K)) 
 

 
Figure 7 DEEP SPACE MISSION WITHOUT INSTRUMENTS 

SW Dev Cost = 5985 + 0.04279*( Total_SC_Cost (FY16$K)) 
 
5. OVERVIEW OF ASCOT: ANALOGY SOFTWARE 
COST TOOL 
 ASCoT Beta will be released sometime in the 
first or second quarter of calendar year 2017 through the 
NASA ONCE Model portal.  This will be the first official 
release of the web-based tool for general use and is a 
major rewrite of the prototype version.  The original 

ASCoT Prototype was modified from a multi-instance 
desktop application implemented entirely in Excel to a 
single-instance web service tool backed by a relational 
database. In a multi-instance tool it is virtually impossible 
to propagate updates to the data or the algorithm through 
all the copies various users have because each instance of 
the tool has its own data and its own code. Using a web-
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based tool, in which both the data and the algorithm are 
stored remotely, circumvents this problem. All updates to 
the data or the algorithm occur on the server, so no user is 
working on a stale version of the tool.  
 
The new data model includes all the mission data on 
which the algorithm runs, as well as configuration options 
to allow admin users to work with subsets of the data in 
their analysis and testing. The same input categories (See 
Appendix A) are available on the new tool, and steps have 
been made to prepare the algorithm to accept other inputs.  
 
The front end has been updated to present the cluster 
results in both tabular and graphical forms with a cleaner 
user interface.  
 
The updated ASCoT Beta is implemented in Python, 
Django, MYSQL, and Javascript. The tool was deployed 
on standard Linux servers, which run CentOS. The 
graphing library used is plotly.js, which is open source 
and fully local. These technologies were chosen because 
they  are widely used, open source, and have been used 
together before by NASA JPL, so sufficient expertise 
exists to update and maintain the codebase. During early 
2017, the ASCoT team will be migrating from their beta 
environment at JPL to a standard NASA shared server 
which will support deployment on ONCE.   

The main benefits of the web-based implementation are: 

1. A single source of data, curated by the tool 
admins, on which to run the algorithm instead 
of the disparate versions that are possible on a 
passed-around Excel tool.  

2. Configuration options that filter the data 
automatically instead of by editing an Excel 
input file.  

3. A cleaner and more expressive user interface 
that is maintainable and extensible.  

 

The ASCoT architectural design is displayed in Figure 8.  
The parts that are currently implemented in the model are 
shown in blue with a dark red border.  The team plan is to 
deliver all capabilities by March 2017. 

 

Figure 8 ASCoT Architecture Design 

 
The ASCoT web tool requires the approved user to input 
their Username and Password as shown in Figure 9  
 

 
Figure 9 ASCoT web tool log-in page 

 
Users provide values for as many of the following input 
categories as are known: software size, inheritance levels, 
mission type, secondary element type, number of 
instruments, flight computer redundancy type, and total 
number of deployables. The inputs are defined in detail in 
Appendix A. Using these inputs, the spectral clustering 
model finds the cluster in which these inputs best fit and 
calculates an associated effort estimate.   
 
The “User Estimate” model input and home page shown in 
Figure 10 consists of three parts: 1) the web tool navigation 
(left pane); 2) Create New Estimate by the user (center); 3) 
summary of the User Estimates resulting output by clustered 
mission names and estimated predicted effort with the range 
of low, median, and high. 
In an example called “Test_Case_2”, the ASCoT web tool 
“Cluster Parameter Variation” in Figure 10 shows the best 
estimated cluster set based on the user’s defined input and 
matched to the Nearest Neighbor and cluster sets. One can 
see that the user’s estimate (indicated by the broken dashed 
red colored line) is very similar and almost identical based 
on the parameter for one of the mission in the cluster set. 
The output will also map the user’s defined parameters to 
see where it fits with all other clusters. Cluster #1 shows the 
user’s input (again, indicated by the broken dashed red 
colored line) compared to other missions in another set of 
cluster which does not fit well based on how closely the 
dashed red line traces over the other missions in that cluster. 
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Figure 10 ASCoT Cluster Parameter Variation 

 
“Cluster Effort Variation” Figure 11 shows a bubble chart 
of all the clusters. The bubble size scales with the level of 
effort, for example, the larger bubble sets in cluster set #3 
has larger effort than in cluster set #2. 
 

 
Figure 11 Cluster Effort Variation Bubble Chart 

 
The Regression Analysis is another part of the tool that 
estimates the Software Development Cost.  This is 
independent from the ASCoT clustering analysis that 
estimates the effort. The Regression Analysis is a quick and 
high level estimating tool. There are a total of four 
regression models, of which three require Total Spacecraft 
Cost as an input; and the last of which requires Total 
Spacecraft Cost and Total Number of Instruments as inputs. 
The first three regression models as shown in Figure 12 
generate estimates  for 1) All Types of Mission; 2) Planetary 
Mission Only; and 3) Earth/Lunar Orbiting Missions. The 
output shows that Total Spacecraft Cost predicting the Total 
Software Development Cost in FY16$M.  
 

 
Figure 12 ASCoT Regression Graph Plot 

 
 
The orange dots are static data points of actual mission sets 
used to form the regression equation. The User’s input will 
be indicated by the blue colored oversized circle as shown 
in Figure 13.  
 

 
Figure 13 ASCoT Regression Plot 

 
 
The user can hover over each data point to see the Total 
Spacecraft and estimated Software Development Costs. The 
last regression model, which takes in Total Spacecraft Cost 
and Total Number of Instruments, outputs the regression 
and estimated result in the 3D view. The axis are estimated 
Software Development Cost, Total Spacecraft Cost, and 
Total Number of Instrument. Like the 2D plots, the orange 
dots are also static data points which missions can be shown 
by hovering over the dots as shown in Figure 14. 
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Figure 14 ASCoT 3D Regression Plot 

5.  NEXT STEPS 
In the future the team plans to expand and improve the 
model in a number of different ways.  First, the online web 
model will be deployed to a broader NASA audience using 
existing NASA shared servers.  This will allow the team to 
collect feedback and also test the process for pushing model 
updates remotely for updated observations or recalculated 
clusters.  During this time the team also expects to improve 
the visualizations and user interface.  Second, the model will 
be expanded to include coverage for other types of NASA 
software, such as Ground systems software.  Data collection 
and data analysis will be required, and the initial capabilities 
for MMRE testing will be used to select optimal modeling 
methodologies for the new software types.  Lastly, the team 
hopes to leverage the online web model and apply the 
methodology development capabilities to other noisy and 
sparse datasets, such as NASA small satellites (cubesats).   
 
ACKNOWLEDGEMENT 
 
The research was carried out at the Jet Propulsion 
Laboratory, California Institute of Technology, under a 
contract with the National Aeronautics and Space 
Administration. 
 
REFERENCES  
 
[1] J. Hihn,  T. Menzies,  L. Juster, G. Mathew,  J. Johnson, 
Improving and Expanding NASA Software Cost Estimation 
Methods, 2016 IEEE Aerospace Conference, Big Sky, Mt., 
March, 2016. 
 
[2] Tim Menzies, D. Port, Z. Chen, J. Hihn, and S. Stukes. 
Validation methods for calibrating software effort models. 
In Proceedings, ICSE, 2005. Available from  
http://menzies.us/pdf/04coconut.pdf. 
 
[3] Menzies, T. Chen Z,  Port, D., Hihn, J., Simple Software 
Cost Analysis: safe or Unsafe?, ACM SIGSOFT Software 
Engineering Notes (SIGSOFT) 30(4)1-6, s2005. 

 
[4] Tim Menzies, Zhihao Chen, Jairus Hihn, and Karen 
Lum. Selecting best practices for effort estimation. IEEE 
Transactions on Software Engineering, November 2006. 
Available from 
http://menzies.us/pdf/06coseekmo.pdf. 
 
[5] "Stable Rankings for Different Effort Models" by Tim 
Menzies and Omid Jalali and Jairus Hihn and Dan Baker 
and Karen Lum. Automated Software Engineering 
December 2010 .  
 
 [6] E. Kocaguneli, T. Menzies, and J.W. Keung. On the 
value of ensemble effort estimation. Software Engineering, 
IEEE Transactions on, 38(6):1403–1416, Nov 2012. 
 
[7] ) B.Boehm, Software Engineering Economics, Prentice 
Hall, 1981.  
BIOGRAPHY 

Jairus Hihn (PhD 
University of Maryland, 
1980) He is a principal 
member of the engineering 
staff at the Jet Propulsion 
Laboratory, and is 
currently the leading a 
laboratory wide cost 
improvement task. He has 
been developing estimation 
models and providing 

software and mission level cost estimation support to 
JPL’s and NASA since 1988.  
 

Michael Saing (BS, Cal 
State University, Long 
Beach). He completed his 
Aerospace Engineering 
undergraduate studies and 
gained his early career 
work experience at the 
NASA Ames Research 
Center. He is currently a 
Systems Engineer at the Jet 
Propulsion Laboratory 

developing aerospace engineering analysis models and 
serves as TeamXc’s subsystems chair supporting NASA 
and JPL’s spaceflight projects and programs. 
 
 



 

 12 

 Elinor Huntington is a 
graduate student at Cal Poly 
Pomona, studying Computer 
Science. She works part time 
at JPL in the Office of 
Formulation. In a past 
academic life, she studied 
Russian Literature. 
 
 
 
 
 
 
James Johnson is 
responsible for providing 
Cost Estimates and 
Assessments, Schedule 
Estimates and Assessments, 
Risk Analyses, and Joint Cost 
Schedule Risk Analysis for 
the OCFO Strategic 
Investments Division (SID) at 
NASA Headquarters. His 
work for NASA HQ includes 
supporting high level Agency 

studies, providing support and consultation to projects, 
and developing policy and guidance for the Agency in the 
areas of cost, schedule, and risk assessments. 
 

Tim Menzies (Ph.D., 
UNSW, 1995) is a full 
Professor in CS at North 
Carolina State University 
where he teaches software 
engineering and automated 
software engineering. His 
research relates to 
synergies between human 
and artificial intelligence, 
with particular application 

to data mining for software engineering. 
 
George V Mathew is a 
graduate student pursuing 
MS in Computer Science 
from North Carolina State 
University. He received his 
B.Tech degree in 
Electronics and 

Instrumentation 
Engineering from Amrita 

University in India. His research interests lies in Software 
Effort Estimation, Optimizing Requirements Engineering 
Models and Distributed Multi Objective Optimization. He 
has also interned as a Software Engineer at Facebook. 



 

 13 

APPENDIX A:  COCOMO Model Inputs 
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Appendix B: System Parameters with Definitions and Examples 
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Appendix B: System Parameters with Definitions and Examples (Continued) 
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Appendix B: System Parameters with Definitions and Examples (Continued) 
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